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New synthesis of cis-3,4-diaryl-1-tosylpyrrolidines

Meng-Yang Chang,a,* Chun-Li Paib and Chun-Yu Linb

aDepartment of Applied Chemistry, National University of Kaohsiung, Kaohsiung 811, Taiwan
bDepartment of Chemistry, National Sun Yat-Sen University, Kaohsiung 804, Taiwan

Received 24 February 2006; revised 17 March 2006; accepted 22 March 2006
Available online 17 April 2006
Abstract—Unsymmetrically substituted cis-3,4-diarylpyrrolidines are synthesized in nearly 25% overall yields starting from 4-aryl-
1,2,5,6-tetrahydropyridines by iterative reactions using the combination of m-chloroperoxybenzoic acid (MCPBA) and boron trifluo-
ride etherate (BF3ÆOEt2) followed by Grignard addition, elimination and hydrogenation sequence.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Depending on the substitution pattern and functionali-
zation, different substituted pyrrolidines have been
shown to be effective antibacterials or fungicides agents
and glycosidase inhibitors.1 In addition, the chiral pyr-
rolidine system can be a synthetically useful ligand in
the asymmetric reactions. Consequently, a significant
effort has been directed toward the development of
new methods for the synthesis of mono-, di-, and poly-
substituted pyrrolidines.2,3 While a great number of
pyrrolidines and their derivatives with this specific sub-
stitution pattern are of particular interest,4 new methods
for their preparation are needed. Basically, the adopted
synthetic strategies of 3,4-diarylpyrrolidines can be
summarized in Figure 1.

The stereocontrolled functionalization of diarylpyrrol-
idines has been established as a reliable method. Diffi-
culties are often encountered in this process due to
lack of stereo- or regiochemistry, harshness of reaction
conditions and availability of starting materials.5 Dur-
ing the course of our investigation, it became apparent
that many of unsymmetrically substituted cis-3,4-diaryl-
pyrrolidines required by us could not be obtained in sat-
isfactory yields following reported methods. Herein, we
report an efficient method of synthesis of unsymmetri-
cally substituted cis-3,4-diarylpyrrolidines starting from
0040-4039/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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4-aryl-1,2,5,6-tetrahydropyridines via an iterative reac-
tion sequence using the combination of m-chloroperoxy-
benzoic acid (MCPBA) and boron trifluoride etherate
(BF3ÆOEt2).
2. Results and discussion

Two 4-aryl-1,2,5,6-tetrahydropyridines 1A (Ar1 =
C6H5) and 1B (Ar1 = 4-FC6H4) were chosen as the start-
ing materials in the synthesis of asymmetric cis-3,4-
diarylpyrrolidines as shown in Scheme 1.6 3-Arylpyrrol-
idin-4-ones 4A and 4B were prepared by the treatment
of olefins 1A and 1B with three repeated combinations
of MCPBA and BF3ÆOEt2.

The continuous transformation with the combination
of MCPBA and BF3ÆOEt2 was described as follows.
Initially, aldehydes 2A and 2B were first provided by
epoxidation of olefins 1A and 1B with MCPBA at rt
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for 3 h and followed by ring contraction reaction of the
resulting epoxides with BF3ÆOEt2 at 0 �C for 15 min.
Next, Baeyer–Villiger reaction of aldehydes 2A and 2B
with MCPBA was further provided olefins 3A and 3B
at rt for 3 h and followed by elimination reaction of
the resulting formyl group with BF3ÆOEt2 at 0 �C for
15 min.7 Finally, ketones 4A and 4B were provided by
epoxidation of olefins 3A and 3B with MCPBA at rt
for 3 h and followed by isomerization of the resulting
epoxides with BF3ÆOEt2 at 0 �C for 15 min.8,9

The transformations from olefins 1 to aldehydes 2 and
olefins 3 to ketones 4 are both the BF3ÆOEt2-mediated
selective rearrangement of trisubstituted epoxide, which
is governed by the stability of intermediary tertiary car-
bocation, and alkyl migration in the former and hydride
shift in the latter takes place, respectively. The total syn-
thetic procedure can be monitored by TLC until the
reaction was complete within a working day. As a
whole, the overall synthetic procedure from 4-aryl-
1,2,5,6-tetrahydropyridines 1A and 1B to 3-arylpyrrol-
idin-4-ones 4A and 4B exhibits three different reaction
types via the useful combination of MCPBA and
BF3ÆOEt2.

With the above results and enough amounts of ketones
4A and 4B, the synthesis of cis-3,4-diarylpyrrolidines
5Aa–Ad and 5Ba–Bd takes place as shown in Scheme
2. Grignard addition of the ketones 4A and 4B with four
different arylmagnesium bromide reagents (a, C6H5; b,
2-MeOC6H4; c, 4-MeOC6H4; d, 3,4-CH2O2C6H3) in tetra-
hydrofuran at �78 �C for 2 h is followed by dehydration
of the resulting tertiary alcohols with BF3ÆOEt2 at 0 �C
for 15 min. The olefins with fully four substituents were
N
Ts

Ar1O

N
Ts

Ar1Ar2

For Ar2,
a, C6H5
b, 2-MeOC6H4
c, 4-MeOC6H4
d, 3,4-CH2O2C6H3

4A~4B 5Aa (43%)
5Ab (46%)
5Ac (41%)
5Ad (47%)

5Ba (45%)
5Bb (43%)
5Bc (48%)
5Bd (46%)

1) Ar2MgBr, THF then BF3.OEt2

2) H2, Pd/C, MeOH

Scheme 2.
provided as the major product accompanied with a trace
amount of isomer with three substituents as judged by
the 1H NMR spectrum. Without further purification,
the mixture of olefins was directly hydrogenated to the
3,4-diarylpyrrolidines 5Aa–Ad and 5Ba–Bd with hydro-
gen in the presence of a catalytic amount of 10% palla-
dium on activated carbon.10

The related 1H and 13C NMR spectral data of symmet-
rical cis-3,4-diphenylpyrrolidine 5Aa were in accordance
with the literature.4a According to Beak’s reports, the
assignment of two contiguous stereocenters on the
framework of compound 5Aa was made the cis configu-
ration. With the result in hand, the other diaryl func-
tional group on the pyrrolidine structure could also be
arranged as the cis configuration.
3. Conclusion

In summary, we present an easy and straightforward
synthesis of unsymmetrically substituted cis-3,4-diaryl-
pyrrolidines by the treatment of 4-aryl-1,2,5,6-tetra-
hydropyridines by iterative synthetic operations using
the combination of MCPBA and BF3ÆOEt2, Grignard
addition, elimination and hydrogenation. We are
currently studying the scope of this process as well as
additional applications of the methodology to the
synthesis of cis-3,4,5-triarylpiperidines.
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21.59; HRMS (ESI) m/z calcd for C24H24NO4S (M++1)
422.1426, found 422.1422. For 5Ba 1H NMR (500 MHz,
CDCl3) d 7.85 (d, J = 8.0 Hz, 2H), 7.41 (d, J = 8.0 Hz,
2H), 7.12–7.04 (m, 3H), 6.74–6.71 (m, 2H), 6.65–6.59 (m,
4H), 3.76–3.69 (m, 4H), 3.49–3.43 (m, 2H), 2.50 (s, 3H);
13C NMR (125 MHz, CDCl3) d 162.61, 160.66, 143.69,
137.42, 134.24, 133.39, 133.36, 129.91 (2·), 129.63, 129.56,
128.09, 128.06, 127.51 (2·), 126.93, 114.86, 114.69, 51.94,
51.50, 49.02, 48.40, 21.59; HRMS (ESI) m/z calcd for
C23H23FNO2S (M++1) 396.1434, found 396.1435. For
5Bb 1H NMR (500 MHz, CDCl3) d 7.83 (d, J = 8.0 Hz,
2H), 7.40 (d, J = 8.0 Hz, 2H), 7.11–7.07 (m, 1H), 6.68–
6.56 (m, 7H), 3.90–3.82 (m, 2H), 3.75–3.60 (m, 4H), 3.52
(s, 3H), 2.50 (s, 3H); 13C NMR (125 MHz, CDCl3) d
162.40, 160.65, 156.79, 143.57, 134.29, 129.86 (2·), 129.28,
129.21, 127.94, 127.53 (2·), 127.07, 126.06, 120.24, 114.38,
114.21, 109.82, 54.87, 52.32, 50.52, 46.41, 41.75, 21.58;
HRMS (ESI) m/z calcd for C24H25FNO3S (M++1)
426.1539, found 426.1540. For 5Bc 1H NMR (500 MHz,
CDCl3) d 7.84 (d, J = 8.0 Hz, 2H), 7.41 (d, J = 8.0 Hz,
2H), 6.75 (t, J = 8.5 Hz, 2H),6.64–6.55 (m, 6H), 3.75–3.66
(m, 4H), 3.72 (s, 3H), 3.43–3.38 (m, 2H), 2.50 (s, 3H); 13C
NMR (125 MHz, CDCl3) d 162.61, 160.66, 158.41, 143.66,
134.27, 133.54, 129.90 (2·), 129.69, 129.63, 129.12 (2·),
127.51 (2·), 114.88, 114.71, 113.39 (2·), 55.14, 51.95,
51.72, 48.42, 48.34, 21.60; HRMS (ESI) m/z calcd for
C24H25FNO3S (M++1) 426.1539, found 426.1542. For
5Bd 1H NMR (500 MHz, CDCl3) d 7.34 (d, J = 7.5 Hz,
2H), 7.40 (d, J = 7.5 Hz, 2H), 6.77 (t, J = 8.5 Hz, 2H),
6.65 (dd, J = 6.0, 8.0 Hz, 2H), 6.50 (d, J = 8.5 Hz, 1H),
6.12–6.11 (m, 2H), 5.86 (s, 2H), 3.74–3.62 (m, 4H), 3.44–
3.36 (m, 2H), 2.50 (s, 3H); 13C NMR (125 MHz, CDCl3) d
162.64, 160.69, 147.40, 146.30, 143.77, 134.12, 131.23,
129.93 (2·), 129.62, 129.56, 127.48 (2·), 121.32, 114.94,
114.78, 108.41, 107.79, 100.88, 51.86, 51.78, 48.77, 48.37,
21.59; HRMS (ESI) m/z calcd for C24H23FNO4S (M++1)
440.1332, found 440.1334.
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